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A direct numerical simulation of spatially periodic wavy core flows is carried out under 
the assumption that the densities of the two fluids are identical and that the viscosity 
of the oil core is so large that it moves as a rigid solid which may nevertheless be 
deformed by pressure forces in the water. The waves which develop are asymmetric 
with steep slopes in the high-pressure region at the front face of the wave crest and 
shallower slopes at the low-pressure region at the lee side of the crest. The simulation 
gives excellent agreement with the experiments of Bai. Chen & Joseph (1992) on up 
flow in vertical core flow where axisymmetric bamboo waves are observed. We define 
a threshold Reynolds number and explore its utility; the pressure force of the water on 
the core relative to a fixed reference pressure is negative for Reynolds numbers below 
the threshold and is positive above. The wave length increases with the hold-up ratio 
when the Reynolds number is smaller than a second threshold and decreases for larger 
Reynolds numbers. We verify that very high pressures are generated at stagnation 
points on the wavefront. It is suggested that a positive pressure force is required to 
levitate the core off the wall when the densities are not matched and to centre the core 
when they are. A further conjecture is that the principal features which govern wavy 
core flows cannot be obtained from any theory in which inertia is neglected. 

1. Introduction 
Lubricated pipelining of viscous materials such as heavy crude, slurries and capsules 

is robustly stable and has a high economic potential. The viscous material does not 
touch the wall. In the case of crude oil, the drag reduction which can be achieved by 
lubrication is of the order of the viscosity ratio with increased throughputs of ten 
thousand or more (for more background see Joseph & Renardy 1993). These lubricated 
flows are called core flows because the viscous material flows in a core lubricated all 
around by water. 

Probably the most important industrial pipeline to date was the 6-inch (15.2cm) 
diameter, 24-mile (38.6 km) long Shell line from the North Midway Sunset Reservoir 
near Bakersfield, California, to the central facilities at Ten Section. The line was run 
under the supervision of Veet Kruka for 12 years from 1970 until the Ten section was 
closed. When lubricated by water at a volume flow rate of 30% of the total, the 
pressure drop varied between 900 p.s.i. and 1100 p.s.i. at a flow rate of 24000 barrels 
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FIGURE 1. The core is at rest and the pipe wall moves to the left. (After Ooms et al. 1984.) 

per day with the larger pressure at a threshold of unacceptability which called for 
pigging. In the sixth year of operation the fresh water was replaced with water 
produced at the well site which contained various natural chemicals leached from the 
reservoir, including sodium metasilicate in minute 0.6 wt % amounts. After that the 
pressure drop never varied much from the acceptable 900 p.s.i. value; the CAF was 
stable as long as the flow velocity was at least 3 ft s-l. 

A surprising property of core flow is that the flow in a horizontal line will lubricate 
with the core levitated off the wall even if the core is lighter or heavier than the 
lubricating water. This levitation could not take place without a hydrodynamic lifting 
action due to waves sculptured on the core surface. In the case of very viscous liquids, 
the waves are basically standing waves which are convected with the core as it moves 
downstream. This picture suggests a lubrication mechanism for the levitation of the 
core analogous to mechanisms which levitate loaded slider leavings at low Reynolds 
numbers. Ooms et aZ. (1984) and Oliemans & Ooms (1986) gave a semi-empirical model 
of this type and showed that it generated buoyant forces proportional to the first power 
of the velocity to balance gravity. In this theory, the shape of the wave must be given 
as empirical input. 

Consider water-lubricated pipelining of crude oil. The oil rises up against the pipe 
wall because it is lighter than the water. It continues to flow because it is lubricated by 
waves. However, the conventional mechanisms of lubrication cannot work. The saw- 
tooth waves shown in figure 1 are like an array of slipper bearings and the stationary 
oil core is pushed off the top wall by lubrication forces. If W were reversed, the core 
would be sucked into the wall, so the slipper bearing picture is obligatory if you want 
levitation. 

Obviously the saw-tooth waves are unstable since the pressure is highest just where 
the gap is smallest, so the wave must steepen where it is gentle, and smooth where it 
is sharp. This leads us to the cartoon in figure 2. To get a lift from this kind of wave 
it appears that we need inertia. Liu’s (1982) formula for capsule lift-off in a pipeline in 
which the critical lift-off velocity is proportional to the square root of gravity times the 
density difference is an inertial criterion. Feng, Huang & Joseph (1995) carried out 
direct numerical simulation of the transport of elliptical shaped capsules in pipelines 
and found that lubrication and initial effects coexist; the lift due to lubrication is 
dominant for low-flying capsules and inertia is dominant for high-flying capsules. It is 
likely that similar dynamics are involved in lubricated oil and slurry lines. At high 
speeds the core flows may literally ‘fly’ down the tube. In all of this, the position of the 
viscous points of stagnation where the pressures are high is of critical importance. 

The importance of inertia in levitation of core flows is also suggested by industrial 
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FIMJRE 2.  (a) The interfiice resembles a slipper bearing with the gentle slope propagating into the 
water. ( h )  'The high pressure at the front of the wave crest steepens the interface and the low pressure 
at  the back makes the interface less steep. (c) The pressure distribution in the trough drices one eddy 
in cach trough. (After Fcng trl.  1995.) 

experience in which stablc lubricated flow occurs only when thc flow velocity exceeds 
some critical u l u e .  

In this paper we confine our attention to Ihe direct numerical simulation of 
axisymmetric core flons. The shape of the interface and the secondary motions which 
develop in a 'flying' core flow arc consistent with wha t  we expected (see figure 2). 

Less intuitiL-e is the existence of a threshold Reynolds number corresponding to a 
change in the sign of the pressure force on the core, from suction at Reynolds numbers 
below the threshold. as in the reversed slipper bearing in which the slipper is sucked to 
the wall, t o  compression for Reynolds numbcrs greatcr than the threshold as in flying 
core flow in which the core can be pushed off the wall by stagnation pressure. 

2. Governing equations 
Consider two concentric immiscible fluids flowing down an infinite horizontal 

pipeline; the core is occupied by fluid 1 and the annulus by fluid 2. Assume alqo that 
the core is axis!nimetric with interfacial waves. The waves are periodic along the axis 
and move a t  certain uniform speed c. The governing equations are 

where ( K C )  are the radial and axial velocity, and 

P = - D-u + p(r ,  x, t )  + C,)( t )  

(2.1) 

(2.2) 



4 R. Bai, K. Kelkar and D.  D.  Joseph 

is the pressure, /3 is the driving pressure gradient, (,ut,pi) are the viscosity and density 
in the core i = 1 and annulus i = 2. We seek a periodic solution in which the time t 
enters only as x-ct in a wave which propagates with a constant speed c. Then, we can 
express the condition that the motion be periodic with period L in x as follows: 

(2.3) 

(2.4) 

1 u = u(x - ct, r )  = u(x + L - ct, r),  

v = v(x - ct, r )  = v(x + L - ct,  r ) ,  

p ( x -  ct,  r )  = p ( x  +L- ct, r ) .  

We next introduce new variables 
z = x - c t  

and 

(2.5) i 
w(z, r )  = v(x - ct, r )  - c, 

u(z, r )  = u(x - ct,  r),  

P ( z , r )  = P(x-ct,r) = -p(z+Ct)+p(r,Z)+Co(t). 

Co(t)  -pet = cpi, 
The system of equations arising from (2.1), (2.4) and (2.5) is to be time independent 

where CPi is constant. In these new variables, z replaces x in (2.1) and 

i a  aw --(ru)+- = 0, 
r ar az 

At the pipe wall r = R, 

and at the centre of the core r = 0, we require 

u = 0, w = -c, 

aw u = o ,  -- - 0. 
i3Z 

The interface is given by 
r =JTz) =f(z+L).  

Here, between the water and oil, the kinematics condition is 

and the velocity condition is [on = 0, where 1.1 = ( - ) , - ( a ) ,  and 

The normal stress condition is 
0 = (u, w). 

(- + 2 ~ 4  + IZ. ,~ ,uD[C]~.  IZ = 0, 

and the shear stress condition is 

t ,  ( I ~ ~ D [ O ] ~ .  IZ = 0, 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 
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where D [ o ]  = $(Vo+ V@), 2 H  is the sum of the principal curvatures, r~ is the 
coefficient of interfacial tension, n = nI2 is the normal from liquid 1 to 2 and t is the 
tangent vector. 

In addition, we prescribe the oil flow rate 

Q, = A JOT’ { [ 27crv(r, z )  dr dz, I 
and water flow rate 

(2.14) 

(2.15) 

3. Rigid deformable core flow 

In many situations, the viscosity of the oil is much greater than the viscosity of water. 
In this case the flow of the oil can be varied as a superposition of creeping motions on 
the forward motion of a rigid core. The surpassingly slow secondary motions should 
not have a sensible effect on the overall dynamics. We shall therefore assume that the 
core is solid with standing waves on the interface. A consequence of the assumption is 
that non-rigid motions of the core may be neglected. In this rigid deformable core 
model, the core is stationary (ol = 0) and water moves. The velocity for wavy core 
flow can be written (figure 3) as 

(3.1) U = ue, + we, = U ,  n + U,$ t ,  

where U ,  is the normal component and lIs is the tangential component of the velocity 
on the interface r =j(z). 

The continuity of the shear stress gives rise to 

So, no matter what the value of 

For heavy crudes in water m = ,uL2/p1 = O(1Op5) is very small, compatible with the 
assumption that ol is effectively zero. 

From continuity of velocity on the interface, [on = 0, we also find that the water 
velocity is zero on the interface. Since the relative velocity in the solid core vanishes, 
the speed c of the advected wave, in coordinates in which the wall is stationary, is 
exactly the core velocity c = w(r ,z )  which is constant, independent of r and z when 
r G f c z ) .  In this case (2.14) reduces to 

Q, = ~ R : C ,  
and 

l L  R: = ,j2(z)dz. 

The viscous part of the normal stress on the interface vanishes: 

(3.3) 

(3-4) 
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FIGURE 3. The velocity components are in different coordinates. 

since 

and on the interface 

Therefore, the normal stress balance (2.12) reduces to 

[[PI = 2Ha. (3.7) 

Apart from the pressure difference required to balance interfacial tension, the 
pressure in an established flow must be the same on each cross-section. Hence the 
pressure in the core is 

while the pressure in the annulus is 

4 = -pz+ CPl,  (3.8) 

P, = -Pz+p(r,z)+C,,. (3.9) 

Since the pressure level is indeterminate we may, without loss of generality, put 

c,, = 0. 
In the water, f < r < R,, we have 

(3.10) 

(3.11) 
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FIGURE 4. Force balance on the wave core is based on one wavelength. 
The pressure drop is / I t  and ABL = f.' is the force. 

And in the oil core, 0 < r < f '  

= -/I. 
dz 

The normal stress balance at r = f which is given by (3.8). then becomes 

(3.12) 

To solve our problem we must prescribe /I, and compute c, or we may give c and 
compute /). Since the momentum change in one wavelength is zero, we may relate c and 

by the force balance shown in figure 4 and expressed as 

= 2 n ~ ( ~ ~ s i n i i + ~ c o a i / ) f ~ l  +(dfj'd:);')' 'dd; 

where 

dj '  tan H = -, 
dz 

(3.14) 

(3.15) 

and /?L is the pressure drop, A is the area of the cross-section of the core, S ,  is the 
arclength in one wavelength r =, f :  n is the unit normal vector, t is the unit tangent 
vector, e, is the unit vector in the axial direction, and T is the shear stress. 

The pressure PL and shear stress T depend on c implicitly; we give c and compute P2 
and T .  The corresponding p is given by iteration using (3.14). 

We must now solve (3.1 1 )  for L periodic functions u, II', p subject to the conditions 
that H' = -c. at r = R,, M: = LI = 0 at r =.f(z)  where Q(,, is prescribed by (2.15), the 
pressure and interfacial tension are related by (3.13) and /7 and c are related by (3.14). 
To solve this. we first prescribe the shape,fo(z) of the wave with a prescribed mean R, 
and, of course. its length Lo and the speed c. We next construct a sequence of iterations 
in which c, R,. and Q,,, are fixed. We first compute u, wand p satisfying all the conditions 
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except (3.13). The pressure p,, belonging tof,(z), then determines a new shapef,(z) to 
satisfy (3.13). A certain constant C, is required to maintain the value of R ,  in the 
iteration. At the next stage we repeat the calculation of u,, w1 andp,. This gives a new 
f,(z) and C,, and so on. 

We can, therefore, calculate convergent solutions corresponding to each and every 
triplet (c, R,, Q,). We do not expect all these solutions to be stable. In experiments we 
obtain one R, when we prescribe the inputs Q, and Q, or c. This should be equivalent 
to prescribing two other independent items of data, say c and R,. Then we would 
expect one Q,  for each c and R, to appear in experiments, but we calculate a family 
of solutions for the given c and R, and any Q,. When the parameters are taken for 
perfect core flow, we get perfect core flow from our simulation; most of these perfect 
core flows are actually unstable. Our simulation then can be regarded as giving rise to 
a one parameter family of wavy core flows whose stability is yet to be tested. 

4. The hold-up ratio in wavy core flow 

volume in the pipe: 
The hold-up ratio h is the ratio Q,/Q, of volume flow rates to the ratio VJV, of 

The hold-up ratio depends on the fluid properties and flow parameters but is most 
strongly influenced by flow type. Equation (4.1) can be represented as the ratio of 
superficial velocities 

where 

Q,  
n(R; - R?)’ c, = 

(4.3) 

(4.4) 

and c = c, for rigid core flow. 
Here, we consider the hold-up ratio in perfect core flow and wavy core flow. A 

perfect core-annular flow has a perfectly cylindrical interface of uniform radius 
without waves and is perfectly centred on the pipe axis with an annulus of lubricating 
water all around. The velocity W and flow rate Q of a perfect core flow is 

W,(r) = - ( R ~ - v 2 ) + - ( R ~ - R ~ ) ,  P P 
4pl 4P2 

(4.5) 

(4.8) 



Equations (4.7) and (4.8) can be written as 

and 

The ratio of the flow rates, the input ratio, is 

where 

PI R2 Rl ( ;, r2 P r  m = -, N = - = 1 +-(1 + ( I  +wzy)l’2) 

The oil fraction is given by 

9 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

while the water fraction is given by 

~ (4.13) 
1 - 1 + (1 + my)”2 

I - $ =  I-- 
1 + ( l / y ) ( l + ( l  +nzy)”’) - y+ 1 + ( I  +my)l”L’ 

The volume ratio is proportional to the fraction ratio. Hence 

The equation for the hold-up ratio is therefore 

(4.14) 

(4.15) 

1 + ( I  + Y P q p  

For very viscous oil, m % 0, and h % 2. 
Now let us consider the hold-up ratio for wavy core flow in the system of coordinates 

in which the wall is stationary. Given a periodic function f(x- ct)  = f(z) with 
wavelength L. the average diameter of the oil core is R,.  where 

The input rate for a rigid core is related to the wave speed by 

(4.16) 

(4.17) 

Since both water and oil flow rates are specified, the total flow rate at each cross-section 
is constant: 

(4.18) 
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0, r = R, 
c,  r =.f(z) 

v ( r , z )  = 

and the flow inputs Q, and Q, are independent of z. Then, the water input can be 
written as 

(4.19) Q, = Qfotul - Q, = ~ c [ . P ( z )  - R?l+ 2n ru(r, Z) dr, r2 f ( 2 )  

independent of z. 

water input Q,. We may write (4.19) as 
Equation (4.19) gives an interesting z-dependent decomposition of the constant 

where 

and 

Y(z )  = 27c rv(y, z) dr. 

(4.20) 

(4.21) 

(4.22) 

Suppose that a wave crest at z = 0 just touches the pipe wall,f(z) = R,. In this case, 
the water flow Q, is entirely due to the forward motion of the water trapped in troughs 
and 

so that @(z) can be said to represent the trapped water. On the other hand, for perfect 
core flow @ = 0 for all z.  

When Q, and Qw are given, the wave speed c and the average diameter of the oil core 
depends on the wave shapeJ(z). The hold-up ratio for wavy core flow is then given by 

Y(z) = 0, @(O) = nc[R;- R:], 

For perfect core annular flow, the flow rate of trapped water is zero since the core 
radius is uniform? = R;. Using Wfrom (4.8) we get h = 2. Let us focus on the flow 
rates at the cross-section of the wave crest, where f = f,,, and assume thatf,,, = R,. 
Then the integral in (4.23) vanishes and the hold-up ratio is 1. Therefore, the hold-up 
ratio for wavy core flow is between 1 and 2. 

In the transition from a perfect core flow to a wavy core flow, the wave troughs will 
carry extra water even if the average diameter of the oil core is unchanged; this 
increases the water flow rate. However, when the water flow rate is fixed, the system 
can not increase the water flow rate. Therefore, the average diameter of the core will 
increase, reducing the water flow rate. In the wavy flow, more oil is in the pipe than 
in perfect core flow, and the hold-up ratio is less than 2. Of course, the speed of the core 
must decrease when there is more oil and oil flow rate is fixed. 

The pressure gradient /3 is related to the difference in area of the core at a crest and 
average area, this is measured by 

d = XC[Y(O) - R:]. (4.24) 

The gap between the pipe wall and wave crest is smaller when d is larger, provided that 
the volume of oil in the pipe is fixed. Smaller gaps imply high friction and large values 
of the pressure gradient. 



5. Comparison with experiments 
Our simulations are for the case in which the density of oil and water are the same; 

when they are not the same and the pipe is horizontal, the oil core will rise or sink. 
Some representative wave shapes, which look like those in experiments, are for density 
matched flows in figure 5 .  

Bai, Chen & Joseph (1992) carried out experiments and calculated stability results 
for vertical axisymmetric core flow in the case when the buoyant force and pressure 
force on the oil are both against gravity (up flow). They observed 'bamboo' waves for 
their oil p,, = 0.905 g cm--3 and I(,, = 6.01 poise in water with pu, = 0.995 g cm-3 and 
,uu, = 0.01 poise. We have simulated the same flow, with the same parameters except that 
our core is infinitely viscous. The results show that ,u0 = 6.01 is not yet asymptotically 
infinitely viscous, but nevertheless the agreements are satisfactory. 

The equations that we used for our simulation are as follows. In the water, we have 

I ?  (? 1c 

I '  c'r CI 
- - ( ru)+ ,  = 0. 

The pressure in the water is 

while the pressure in the core is 

where g is gravity and pc  is the composite density of the mixture 

i [ I ,  = r", f + (1 - $1 " 2 %  

and R ,  
R.2 

'I  = -. 
(5.4) 

We compared wavelengths, wave speeds and waves shapes from our computation 
with experiments and the linear stability theory In Bai et ul. (1992). In our comparison, 
the flow parameters are based on the experimental information, such as flow rates of 
oil and water, oil volume ratio and hold-up ratio. In Bai er nl. (1992), the hold-up ratio 
is a constant 1.39 and the volume ratio of the oil yields the following formula: 

The results are given in Table 1 .  In columns I and TI, data from Bai et al. (1992) were 
computed by linear theory of stability. In column I, the computations were carried out 
for the values of Q, and Q?, prescribed in the experiments. In column 11, the 
calculations were made with the prescribed Q,, and measured value of R, corresponding 
to the observed hold-up ratio 17 = 1.39. The values of '1 and R corresponding to the 
given values of Q, and Q ,  for the experiments with h = 1.39 and CT = 22.5 ( J  = 

1 1 . 2 ~  lo4) are: 1 (0.76, 661). 2 (0.7, 683), 3 (0.61, 722),  4 (0.54, 7 5 8 )  5 (0.67, 342). 6 
(0.74, 328), 7 (0.79, 320), 8 (0.82, 314) and 9 (0.84, 310). 
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FIGURE 5. Selected wave shapes for water-lubricated axisymmetric flow of oil and water with the 
same density p = 1.0 g ~ m - ~ ,  ,u2 = 0.01 poise and cr = 26 dyn cm-l for oil and water. The core is 
stationary and the wall moves to the right. The pipe diameter is R, = 1 .O cm. Q, and Q, are in cm% s-l. 
The data for each frame is given as a triplet of prescribed dimensional value (Rl, Qo, Q,) and as a 
triplet of prescribed dimensionless values [T, h, R] where 9 = R,/ R,, h is the hold-up ratio and 
Reynolds number R is defined by (6.8). The dinensionless surface tension J = 13 x lo4 defined in 
(6.15) is for all frames. The data for each dimensional and dimensionales triplet are A (0.4, 12.6, 5.05), 
[0.8, 1.4, 2501; B(0.4, 22.6, 9.09), [0.8, 1.4, 4501; C(0.4, 37.7, 15.2), [0.8, 1.4, 7501; D (0.43, 34.9, 8.8), 
[0.86, 1.4, 4201; E(0.43, 43.6, l l ) ,  [0.86, 1.4, 5251; F(0.43, 69.7, 17.5), [0.86, 1.4, 8401; G(0.39, 26.1, 
12), 10.78, 1.4, 6001; H(0.41, 35.2, 12.3), [0.82, 1.4, 6001; 1(0.425,45.4, 12.5), [0.85, 1.4, 6001. Frames 
A-F show that the wavefront steepens and the wavelength decreases for increasing R (cf. figure 9). 
Frames G-I show how the wavelength shrinks as the thickness of the water layer decreases. The wave 
shape does not change much as 7 is increased for given values of h and R because the wavelength and 
amplitude both decrease. This gives rise to a nearly ‘ self-similar’ wave shape leading to ‘sharkskin’ 
as 7 + 1 (cf. figure 15). 
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FIGURE 6. (a)  Computed waves and ( h )  bamboo waves. when [Q,,. Q,,l = [200, 4291 cm" min-I. 

Input 
flowrate 

No. Q,, Q,, 
1 2 5 . 3 8 1 3 . 1 7  
2 18.19 13.17 
3 11.01 13.17 
4 7.42 13.17 
5 7.42 6.46 
6 11.01 6.46 
7 14.60 6.46 
8 18.19 6.46 
9 21.78 6.46 

Computations 

L (cm) c (cm s I )  

1.32 55.59 
1.66 46.45 
1.70 37.30 
1.33 32.73 
1.77 20.88 
1.66 25.45 
1.39 30.02 
1.15 34.59 
0.96 39.17 

_ _ _ _ ~  
Experiments 

L (mi) c (cm s - I )  
1.21 57.7 
1.31 43.28 
1.41 35.65 
1.22 27.81 
1.374 19.16 
1.79 22.90 
1.34 28.22 
1.17 31.06 
0.90 36.25 

- 
1 I1 

-~ - - ~- - - 

L (cm) c (cm s~ ' )  L (an)  c (cm s-') 

0.82 79.84 0.79 52.02 
0.92 80.21 0.96 42.54 
1.22 79.76 1.22 33.51 
1.65 77.00 1.33 29.42 
1.56 58.91 1.25 17.94 
1.23 58.12 1.16 22.17 
1.05 54.80 1.02 26.68 
0.95 50.85 0.87 31.33 
0.86 49.38 0.79 35.71 

TABLE 1. Comparison of computed and measured values of the wave speed c and wavelength L 
with the linear theory of stability. 
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The comparison of computed and measured values of the wave speed and 
wavelength of bamboo waves is given in Table 1. The computed values are slightly 
larger than the measured values, owing to the fact that motion in the core is neglected 
with better agreement for faster flow. 

Computed wave shapes and the observed shapes of bamboo waves are compared in 
figures 6 8 .  The pictures were taken in a vertical pipeline with motor oil ( p o  = 

0.905 g ~ m - ~ ,  ,uo = 6.01 poise) and water (pu, = 0.995 g cmP3, pull, = 0.01 poise). Both 
water and oil flow against gravity. The water flow rate is fixed at 200 cm3 min-l while 
oil flow rate is 429, 825 and 1216 cm3 min-l, respectively. 

The computed and observed shapes are alike. In fast flow, the velocity in the oil core 
is small compared with the velocity in the annulus and the oil core can be considered 
to be a rigid deformable body. In slower flow (figure 6), the flow inside the core is not 
so much smaller than the flow in the annulus and the steins of the waves are more 
readily stretched by buoyancy. Even is this case the agreements are satisfactory. 

6. Dimensionless equations 

variables. In the dimensional equations, we used the following parameters : 

In the dimensionless formulation, the lengths are scaled with the pipe radius R,, 
pressures are scaled by p, V ,  and velocities are scaled with U. Therefore 

Analysis of this simulation is most useful when carried out in terms of dimensionless 

(RZ, Ri, P,, P Z ~  ~2 Qo, QJ. 

u = UiT, 
w =  uw, 

Y, z,.L L = R, F, R, Z, R,J R, L,  

where 

l a  c?w 
r c?r aF 
--(m)+- = 0, 

P2 
We prefer the Reynolds number 

hence, the relationship between U and c is 

UR, U 
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FIGURE 7. ((0 Computed waves and (0) bamboo waves. when [Q>,. Q,,] = [200, 8251 cm3 min-’ 

and a dimensionless wall speed is 

At the boundary 

where 

and 

(6.10) 

(6. I 1) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 
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FIGURE 8. (a)  Computed waves and (h) bamboo waves, when [Q,<, Q,] = [200, 12161 c i d  min-'. 

The dimensionless oil flow rate 

(6.16) 

is determined if '7 is given. 
The dimensionless water flow rate may be expressed by the hold-up ratio h using 

(6.17) 

(4.2) 
n( 1 - ? I 2 )  - n( 1 + 11) 
(1 -? / )A - ____ h '  

- Qu, - 1 R ,  
Q,=------- 

R i U  R;DJf i ,  

Therefore, only four parameters are required for a complete description of our 
problem : 

All possible problems of scale-up can be solved with this set of parameters. 

R,q,J  and h. 

7. Variation of the flow properties with parameters 

the interface and wave shape vary with R, '1, h,  J .  
Now we shall show how wavelength, pressure gradients, pressure distributions on 
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FIGURE 9 ( a )  Dimensionless wdvelength L vs Reynolds number R (6 8) for 1 [ r / , h , J ]  = [0.8, I 4, 
13 x 10'1 and for 2 [q ,h .J]  = [0 86 1 4. 13 x lo4], ( h )  Pressure grddient p* vs R under the same 
conditions The wave shdpes for the points A-F are shown in figure 5 
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FIGURE 10 (a) Pressure distributions on the interface p*(?/L) for R = 0. 10, 150 when [yl, h, J ]  = [0 8, 
1 4, 13 x lo4] Note that the pressure force, the drea under the pressure curve, is negative for R = 0, 
10 and is positive when R = 150 ( h )  Pressure dirtributions on the interfnce for R = 250, 450, 750 
when [r/ ,h.J]  = [0 8, 1 4, 13 x lo*] All the pressure forces die positive with the greatest pressure dt 
the forwdrd points of stagnation 
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FIGURE 11. Wave shape (f lL vs. F / E )  for three R = 250, 450, 750 
when [ 7 , h , J ]  = [0.8, 1.4, 13 x lo4]. 

2.8 

2.6 

2.4 

2.2 

2.0 

1.8 

I .6 

1.4 
1 

h 

FIGURE 12. (a) Wavelength L vs. h for [v, R, J ]  = [0.8, 600, 13 x lo4]; 
(6) pressure gradient /3* vs. h under the same conditions. 

We have already established that for a highly viscous core in which the oil moves as a 
rigid body, the hold-up ratio varies between h = 2 for perfect core flow and h = 1 for 
the 'waviest' possible core flow. In experiments, a unique h is selected when the flow 
inputs are prescribed so that all but one of the family of solutions for 1 < h < 2 are 
apparently unstable. The stable flow selects a certain 12 = h" and a certain wavelength 

= L(Q,, Q,, h). This wavelength appears to be associated to a degree with the length 
of wave that leads to the maximum rate of growth of small disturbances perturbing 
perfect core-annular flow (see table I). The hold-up ratio for the bamboo waves which 
appear in up-flow in the vertical pipeline studied in the experiments of Bai et al. (1992) 
was about 1.39, independent of the inputs Q, and Q,, and the same h = 1.39 is attained 
in down-flow at large Reynolds numbers. These observations have motivated us to 
compute many results for h = 1.4. 

In our computation we chose J = 13 x lo4 corresponding to the actual physical 
parameters in wavy core flow in water in which ,u2 = 0.01 poise p = 1 g ~ m - ~ ,  (r = 
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FIGURE 13. Pressure distributions on the interface for different h 

when [T,R,J] = [0.8, 600, 13 x lo4]. 
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FICURF 14 Wave shape f l L  vs F j L  under the conditions specified in figure 13 

26 dyn cm-I, in a pipe of a 1 cm diameter. A value of ‘1 = 0.8 is fairly typical of 
experiments. The definition of the dimensionless parameter p* and gradient p* are 

The overall pressure is such as to make p* = 0 at the crest of the va .e . 
Figure 9 shows that the wavelength decreases with R and the pressure gradient 

increases linearly with R for fixed values of v ,  h and J. 
Figures 10 and 11 show that the wave steepens at the front and relaxes at the back 

of a wave crest as the Reynolds number is increased. The steepening is produced by the 
high pressures at the stagnation point on the wavefront (of figure 24). The pressure at 
the stagnation point is probably quadratic in a typical speed on the dividing streamline 
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FIGURE 16. Pressure distributions on the interface for different '1 
when [R,h,J]  = [600, 1.4, 13 x lo4]. 

but is not quadratic in the core speed. The pressure force, the area under the pressure 
curve, changes sign for 10 < R < 150. The variation of the pressure force and pressure 
peak with R is very nearly linear. This shows that lubrication effects control the 
pressure even when the wave shape has been strongly distorted by inertia. This 
situation is similar to the case of levitation of a low-flying elliptical capsule studied by 
Feng et al. (1995). 

Figures 12, 13 and 14 show how the wavelength, the pressure gradient, pressure 
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FIGURE 18. (a) Wavelength L vs. h for [ r / ,R ,J ]  = [0.8, 0, 13 x lo4]; 
(6)  pressure gradient p* vs. h under the same conditions. 

distribution and waveforms vary with h when [ q ,  R,J]  = [0.8, 600, 13 x lo4]. The wave 
shape is more unsymmetric and the pressure force is greater when h is close to 1. The 
wavelength is a decreasing function of h when R = 600, but is an increasing function 
of h when R = 0 for the same parameters (cf. figure 20). 

Figures 15, 16 and 17 show how the wavelength, the pressure gradient and 
waveforms vary with y when [R, h, J ]  = [600,1.4, 13 x 10'1. The wavelength decreases 
and the positive pressure peak and wavefront slope all increase as the gap becomes 
smaller. This suggests that the levitating pressure force will intensify as the gap 
becomes smaller when the density of the oil and water are different. Moreover, figure 
15 shows that L(4) z a-bq so that the wavelength L(4) apparently tends to zero as 
y +  1 (cf. figure 15). The wave shape is nearly 'self similar' in this limit leading to 
' sharkskin '. 

Figures 18, 19 and 20 show how the wavelength, the pressure gradient, pressure 
distribution and waveforms vary with h when [yl,R,J] = [0.8, 0, 13 x lo4]. The wave 
shape is more unsymmetric and the pressure force is greater when h is close to I .  The 
wavelength is an increasing function of I? when R = 0. 
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FIGURE 19. Pressure distributions on the interface for different h when [y/ ,R,J]  = [0.8, 0, 13 x 107. 
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FIGURE 20. Wave shapeflL vs. T / L  under the conditions specified in figure 19. 
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FIGURE 22. Pressure distributions on the interface for different 'I when [W, h, J ]  = [0, 1.4, 13 x lo4]. 
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FIGURE 23. Wave shapes for the conditions of figure 22. 

Figures 21, 22 and 23 show how the wavelength, the pressure gradient and 
waveforms vary with yl where [h ,  R, J ]  = [1.4,0,13 x 10'1. The pressure force is negative 
under all conditions, and it is even more negative when gap is small. The waveforms, 
nevertheless, are steeper on the front than on the rear face, though this asymmetry is 
less pronounced than at higher Reynolds numbers. 

When the flow is driven by pressure, there is friction between the core and the wall 
which induces a secondary motion most easily seen in a frame moving with the core. 
Figure 24 shows these secondary motions for R = 0 and R = 750. The pressure 
distributions are shown in figure 10 for R = 0 and for R = 750. The flow has two parts; 
a more or less straight flow from left to right and an eddy. There are two points where 
the flow separates or rejoins the main flow. The high pressure at the front of the crest 
of the wave propagating into the water appears to be associated with a dividing 
streamline, while the low pressure at the back of the crest of the wave is related to 
rejoining the streamline. The pressure is high and positive at the separation point and 
low and negative at the reattachment point. The waveforms are more symmetric when 
R = 0 and the pressure variations are moderate with positive pressure on the right at 
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FIGURE 24. Secondary motions for (a) [BB, 7, h , J ]  = [0, 0.8, 1.4, 13 x lo4], (b) [BB, 7, h, J ]  = [750, 0.8, 
1.4, 13 x lo4]; The pressure at the stagnation point on the steep slope at the right corresponds to the 
pressure maximum shown in figure 10(b), ( c )  the eddies for Stokes flow as the same condition of (a), 
(d )  the eddies as the same condition or (b). 

separation points and slightly larger negative pressures at the left, at reattachment 
points. Overall, the pressure force for R = 0 is negative and the eddy is more or less 
centrally located. When R = 750, the waveform, the secondary motion and the 
pressure distribution are profoundly influenced by inertia. The forward slope of the 
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wave steepens and the rearward slope relaxes, the eddy moves down and to the forward 
face ; the stagnation pressures there grown substantially while the reattachment 
pressures decline. All this results in a strongly positive pressure force. 

Figure 25 shows that the wavelength increases with surface tension, which smooths 
the wave. 

8. Threshold Reynolds numbers and levitation of wavy core flows 
The total pressure force on the core is an integral of the pressure on the core surface, 

the area under the pressure curves shown, say, in figures 10, 13, 16, 19 and 21. The total 
pressure force is negative at zero and small Reynolds numbers, and is more and more 
positive as the Reynolds number is increased past a threshold. Figure 26 shows that the 
wavelength L(h) is an increasing function of h when R = 0 and is a decreasing function 
of h when R is greater than some threshold. 

The concept of a threshold may be formulated in terms of the pressure force 

where n is the normal to the core and S is the arclength. The pressure p" in (8.1) is 
chosen to be zero at wave crests. Since the pressure level is not determined by any 
condition in our problem, our choice is consistent but arbitrary. The radial component 
~ t - e ,  of the shear stress vanishes at crests and troughs and at two other points where 
T = 0. This term does not make a sensible contribution to the radial force. Figure 27 
gives the locus of points where F, = 0, with 4 < 0 below and F, > 0 above. The 
threshold value is always positive though it decreases with h,  since F, < 0 for Stokes 
flow. In figure 28 we plotted E;; for h = 1.9 where '1 = 0.9. This is a case in which 
lubrication theory might be used; however, R, is about 2.25 so that the pressure force 
is negative for lubrication theory (see 99). Figure 29 shows that the wavelength changes 
with hold-up ratio for [yl,R,J] = [0.8, 100, 13 x 107. The slope dL/dh is greater than 
zero in a lower hold-up ratio and less than zero in a higher hold-up ratio. 
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FIGURE 27. Threshold Reynolds numbers W vs. h for [ v , J ]  = 10.8, 13 x lo4]. 

We may argue that a positive levitation of a lighter or a heavier than water core flow 
requires a positive pressure force to push the core away from wall. The pressure forces 
are associated with the form of waves that they generate. Waves also develop in Stokes 
flow, but the pressure forces associated with these waves are negative like those on the 
reversed slipper bearing which pull the slipper to the wall. When the Reynolds number 
is higher than the threshold, high positive pressures are generated, especially at the 
stagnation point on the steep part of the wavefront (figure 24). 

In the axisymmetric problem with matched density considered here, lateral motions 
of the core off centre are not generated by pressure forces, whether they be positive or 
negative, because the same pressure acts all around the core. We may consider what 
might happen if the core moved to a slightly eccentric position owing to a small 
difference in density. The pressure distribution in the narrow part of the gap would 
intensify and the pressure in the wide part of the gap would relax according to the 
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FIGURE 28. Pressure force due to pressure on the interface vs. R for [t / ,h,  J ]  = [0.9, 1.9, 13 x lo4]. 
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FIGUR~ 29. The slope dL/dh of the wavelength changes with hold-up ratio for 

[yl, R.J] = [0.8, 100, 13 x lo4]. The value of / j  changes with k for a given L. 

predicted variation of pressure with 4 shown in figure 16. In this case a more positive 
pressure would be generated in the narrow gap which would levitate the core. The 
equilibrium position of the core would then be determined by a balance between 
buoyancy and levitation by pressure forces which, in the case of matched densities, 
would centre the core. In eccentric horizontal core flows of lighter-than-water oils 
which are in experiments, the waves in the small gap near the top wall are shorter and 
the positive pressures are higher than in the large gap at the bottom (see figure 30), the 
speed of the core is increased, the core moves to the centre and the shape of the wave 
tends to the axisymmetric ones studied here. 
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FIGURE 30. The core moves from right to left. Steep crests propagate into the water. The lighter core 
levitated off the top wall by high pressures produced at stagnation points at the steep slope on the top. 
The wave crests are closer together a t  the top than the bottom. 

9. Lubrication theory 
Lubrication theory is valid when inertia is neglected (Stokes flow), when the wave 

amplitude is small and the radial velocity u and c?w/L?z are negligible. The last 
conditions imply that secondary motions are not present or are very weak. The 
required conditions can be achieved in the limit in which R and 2-h tend to zero, in 
Stokes flows which perturb perfect core flows. Small gaps are one way of achieving 
small R, but other possibilities are compatible with lubrication theory. Moreover, we 
have already seen (cf. figure 5 and 15) that small gaps do not give rise to long waves 
as is often assumed in lubrication theories. It is of value to examine the lubrication 
theory in bright light since it is very popular with applied mathematicians and has 
played a historically important role in the development of the theory of core flows. 

After applying the assumptions of lubrication theory, the governing equations (3. I 1) 
reduce to 

where IY = 0 at r =.f(z) and w = --c at Y = R,. Hence 

where 

and 

1 dP, 
1 dP, 4p dz 

c + -_ (R2 - f”(z ) )  

ln (;), w(r) = -- (r2 -f’(s)) - 

4,u dz In(%) 

(9.1) 

1 dP, 
1 dP, 4p dz 

c + -_ (R2 - f”(z ) )  

ln (;), w(r) = -- (r2 -f’(s)) - 

4,u dz In(%) 
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The pressure difference is opposed by the integral of the shear stress on the wall, 

After combining (9.2) and (9.5). we relate the wavespeed L‘ to the pressure gradient 

This equation can also be obtained from (4.5) with I(, - cc. For a given speed c, the 
pressure gradient is determined by the shape of the core. 

Since p is a periodic function, the driving pressure gradient is given by 

The periodic pressure, a functional of f’(z), is 

(9.7) 

(9.9) 

In the perfect core-annular flow. f ( z )  = R, is uniform and (9.8) and (9.9) show that 
p(z)-P,(O) = 0 and pressure gradient will be constant. 

We carried out an analysis of these equation by assuming f l z )  and computing p ( z ) .  
Of course, the normal stress balance is not satisfied by the assumed shape but we could 
iterate all of the assumed shapes to a unique one which satisfies the reduced normal 
stress balance (3.13) 

Here 
f l  = - / j z + f , ( O )  

in the core, and (9.7) implies that 

in the annulus. The pressure jump across the interface is then 

where 

(9.10) 

(9.1 1) 

(9.12) 

(9.13) 

C’, = C(0)- <(O) 

Our iteration starts with any trial wave, say /,(I). Then we compute 

and carry out the first iteration using the normal stress balance to compute.f2(z): 
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FIGURE 32. Comparison of pressure distributions when [ r , h , J ]  = [0.8, 1.9, 13 x lo4]. 

We then compute 

and so on. This iteration converges to the unique solution shown in figure 3 1 for each 
of three very different guesses forf,(z). The wave is nearly symmetric, but the pressure 
force is slightly negative. 

Stokes flow will reduce to lubrication theory as h+2. Figure 32 compares the 
pressure distributions from lubrication theory and Stokes flow for the condition is 
specified in figure 31 ; in both cases the area under the pressure curve is negative. These 
flows, as well as those at small Reynolds numbers, may be unstable to off-centre 
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perturbations of the type considered by Huang & Joseph (1995) since the unbalanced 
core could possibly be sucked to the wall by the negative pressure force. 

10. Conclusions 
Core-annular flows of liquids with the same density and a high viscosity ratio were 

computed in a direct numerical simulation. It was assumed that flow is axisymmetric 
and the core is solid with advected periodic standing interfacial waves fixed on the 
moving core. These assumptions reduce the number of parameters defining the 
problem to four: Reynolds number. radius ratio. hold-up ratio and surface tension 
parameter. In dimensional terms, for given material parameters, we obtain solutions 
when the volume flow rates of oil, water and the hold-up ratio are prescribed. Only the 
flow rates are given in experiments and the hold-up is then determined by stability, so 
we are computing a family of solutions most of which are unstable. 

The numerical solutions have the properties predicted by Joseph in Feng et al. 
(1995)- i.e. high pressures on the forward facing slope of the wave, where the water 
enters into a wave. This leads to unsyminetric waves, unlike those which levitate a 
slipper bearing. The problem of levitation does not arise in the density matched core, 
but the pressure distributions which actually develop in this case seem to be such as to 
centre a slightly displaced core only when the Reynolds number is greater than a 
threshold value which depends on the parameters but in all cases is strictly positive. 
The concept of a threshold Reynolds number for levitation is suggested but not 
established by our work. T o  establish such a concept it would be sufficient to see if 
solutions for the density matched flows computed here are stable to off-centre 
perturbations and to compute and consider the stability of finite-amplitude off-centre 
core flows when the density is not matched. 
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The authors wish to thank Mr  J .  Feng, Adam Huang, Peter Huang. Terrence Liao and 
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Appendix 
A. I . Coniputalioniil solution of t lw tole-iinnulur ,pair 

The axisymmetic core-annular flow with the deformable oil core is governed by 
equation (3.1 1) subject to the normal stress condition specified in (3.13) and the force 
balance on the oil core described in (3.14). For each given value of the parameter triplet 
(c. R,, 17).  computational solution of these equations is carried out to determine the flow 
of water, the shape and location of the free surface of the oil core, and the wavelength. 
This calculation involves an iterative solution between the calculation of the flow field 
of water and the calculation of the free surface shape. In the following discussion, 
important details of these two steps and the overall solution algorithm are described. 

A.2. Conzputation of  tlw j l o ~ .  field of' i t x t e r  
Finding the velocity and the pressure field involves the solution of the momentum and 
continuity equation (equation (3.1 I ) )  for the specified wave speed c and the available 
free-surface shape and wavelength. Relevant details of the discretization method and 
the solution technique and the procedure for the determination of the pressure gradient 
/I' are now described. 



32 R. Bai, K. Kelkar and D. D. Joseph 

A.3. Discretization method and solution technique 
The control-volume-based computational method of Patankar (1 980) is used for the 
solution of the Navier-Stokes equations governing the flow of water. In this method, 
the domain of interest is divided into a set of control volumes. Values of scalar 
unknowns including pressure are stored at the main grid points. A staggered grid is 
used for storing the velocity components to avoid the occurrence of checker boarding 
of the pressure field. Thus, a normal velocity component is stored on each control 
volume face. This gives rise to momentum control volumes in the z- or r-directions 
to be displaced in the z- or r-directions, respectively. The discretization equations for 
z- or r-direction velocity components are constructed by integrating the z- and 
r-direction momentum equations over the control volumes staggered in z- and r- 
directions, respectively. The continuity equation is discretized over the main control 
volume. The convective-diffusive fluxes over the control volume faces are computed 
using the Power-law scheme (Patankar 1980). The resulting discretization method 
expresses perfect conservation over individual control volumes and the entire domain. 

Two important issues need to be addressed in the application of this discretization 
method for predicting the flow field of water, (i) the representation of the free surface 
and (ii) the treatment of the periodicity conditions. In the present study, an 
axisymmetric cylindrical grid is used to discretize the entire domain (0 d r d R,, 
0 < x d L). The rigid core is represented by imposing a zero velocity on the control 
volumes that lie in the oil core through the use of a high viscosity. This procedure 
approximates the wavy interface using a stepped grid. A grid independence study was 
carried out to determine the size of the grid necessary for accurate prediction of the 
water flow and the interface shape using an increasing number of grid points until the 
accuracy of the pressure distribution shows no significant change. The prediction of the 
core-annular flow is carried out assuming that the deformation of the wavy interface 
is spatially periodic. This enables us to predict the flow over the segment of the pipe 
corresponding to one wavelength. Thus, all variables in (3.1 1) are periodic at z = 0 and 
L. During discretization, the control volume faces at z = 0 and L are treated as 
topologically coincident to incorporate this periodicity condition (Patankar, Liu & 
Sparrow 1977). 

The discretized momentum and continuity equations are solved using the SIMPLER 

algorithm (Patankar 1980) that addresses the velocity-pressure coupling effectively. 
The algorithm involves sequential solution of the pressure, momentum, and pressure- 
correction equations. The line-by-line method is used for the solution of the 
discretization equations for each variable. The circular Tri-Diagonal-Matrix- 
Algorithm (TDMA) is used for solution of the discretization equations along lines in 
the periodic direction. 

A.4. Determination of the pressure gradient p 
Since we have chosen to specify the wave speed c, the corresponding pressure gradient 
p in (3.11) has to be calculated. The condition of force balance on the oil core expressed 
in (3.14) provides a natural method for its determination. Thus, in each iteration of the 
SIMPLER procedure for calculating the water flow field, the value of p is updated 
according to (3.14) based on the available pressure P2 and the shear stress T on the free 
surface of the oil core. At convergence of the internal iterations for the calculation of 
the water flow field, the value of p is determined for the specified wave speed c and the 
available free-surface shape. 
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A.5. Determination of the free surfkce shape 
Computational prediction of the free-surface shape involves discretization and solution 
of the normal stress equation with an iterative adjustment of the surface shape for 
obtaining the prescribed average core radius R, and the hold-up ratio h. Important 
details of these steps are now described. 

A.6. Discwthntion unrf solution of the norrnul stress condition 
The shape of the interface is governed by the normal stress and pressure jump 
condition reproduced below. 

The solution of this equation is sought for the available pressure variation p(z )  on the 
free surface that is determined from calculation of the water flow field. The unknown 
shape.f(z) is represented by discrete values off’at the same locations in the z-direction 
used in the calculation of the flow field of water. The equations for these values offlz) 
are constructed by integrating the above equation over the main control volumes in the 
z-direction. The last term in the equation is treated explicitly as a source term and is 
assumed to be constant over the control volume. The resulting discretization equation 
has the following form. 

where 
uJ; = hi.f)+l+ci~~fi_,+SA:i, (A 2) 

1 1 

and 

Similarly to the flow field calculation, the periodicity 0f.f. values is accounted for in the 
above equations by recognizing that in the equation for,fs, theJ)+, is replace byf; while 
in the equations for j ; ,  the I;.., is replaced by fi-. The single * in (A 2) represents 
available values that are updated within the inner iteration for determining the free- 
surface shape while the ** on p i  denote that these values are kept constant during the 
free-surface calculation and updated only in the outer iteration. 

A:i = f ( ~ ? + ,  - z iP l ) .  

A.7. Ac{justment foufi.uecl R, ctnrf h 
The unknown pressure jump C,, and the wavelength L provide the two degrees of 
freedom necessary to determine the free-surface shape consistent with the specified 
values of the average plug radius R ,  and the hold-up ratio h. After each iteration during 
calculation of the,f; values, the value of C,, is increased or decreased according to 
whether the avai1abkf.i values imply a value of R, larger or smaller than that desired. 
Similarly. the wavelength L is increased or decreased if the current value of the hold- 
up ratio h is larger or smaller than its prescribed value. The amount of adjustment in 
the values of C,) and L is determined using the secant method. It uses the predictions 
from the last two iterations to determine the sensitivity of R, and h to changes in C, 
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and L. The sensitivity coefficients are then used for inferring the changes in C,, and L 
to be made in the next iteration. At convergence, this procedure provides a free surface 
shape and location having the desired R, and h for the surface pressure variation 
determined from the flow-field calculation. 

A.8. Overall solution algorithm 
The overall solution method involves an outer iteration between the flow field 
calculation for water and the determination of the free surface and is outlined below. 

1. Prescribe the values of wave speed c, average core radius R,, and the hold-up 
ratio h. 

2. Assume a free-surface shape. Calculate the velocity and pressure fields in the 
water region for the specified wave speed c. During each iteration of the flow-field 
calculation, the pressure gradient p is adjusted to satisfy the force balance on the oil 

3. The shape of the free surface is determined by solving the equation describing the 
normal stress condition for the surface pressure determined from step 2. The 
wavelength and the pressure jump are adjusted in each iteration so that at convergence 
the free surface shape is determined for the prescribed average core radius R, and 
hold-up ratio h. 

4. The new free surface is now used in determining the flow field in step 2. Thus, 
steps 2 and 3 are repeated till convergence to obtain a self-consistent flow field of water 
and free-surface shape of the oil core for the prescribed values of the parameter triplet 

The overall solution method correctly predicted the perfect core flow. Further, it 
predicted the same free-surface shape in the flow field of water irrespective of the initial 
guess surface. This constituted a rigorous test for the correctness of the computational 
technique. Consequently, the above method was applied for computing the details of 
the wavy core flow for a range of the parameter triplet (c, R,, h).  

plug. 

(c, R,, h). 
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